Composition and Cycling of Organic Carbon in Soil
نویسنده
چکیده
Soil organic carbon (SOC) represents a significant reservoir of carbon within the global carbon cycle that has been estimated to account for 1,200–1,550 Pg C to a depth of 1 m and for 2370–2450 Pg C to a depth of 2 m (Eswaran et al. 1995; Lal 2004a). Comparative estimates of organic C contained in living biomass (560 Pg) and atmospheric CO2-C (760 Pg) (Lal 2004a) indicate that variations in the size of the SOC store could significantly alter atmospheric CO2-C concentrations. A 5% shift in the amount of SOC stored in the 0–2 m soil profile has the potential to alter atmospheric CO2-C by up to 16%. Land-use change can induce emission or sequestration of carbon depending on a range of soil and environmental properties and land management practices. Carbon sequestration in soils is a slow process but may offer the most efficient natural strategy for offsetting increased atmospheric CO2-C concentrations induced by fossil fuel burning and conversion of natural terrestrial systems to agriculture (Lal 2004a; Metting et al. 1999; Post et al. 1999). It has been suggested that, over the next century, improved land management strategies could sequester up to 150 Pg CO2-C (Houghton 1995; Lal 2004b; Lal et al. 1998); however, considerable uncertainty exists in such estimates because of an inability to accurately predict the total carbon sequestration potential of soils. Improving our understanding of SOC cycling processes and how these are affected by land management practices will be important to defining future opportunities for carbon sequestration in soils. In addition to its importance in the global carbon cycle, SOC contributes positively to a range of biological, physical and chemical properties important to defining the potential productivity of a soil (Baldock and Skjemstad 1999; Part I Principles of Nutrient Cycling
منابع مشابه
معدنی شدن کربن و نیتروژن آلی بقایای گندم در خاکهای آلوده به سرب
To assess the effects of different levels of soil lead on mineralization of organic carbon and nitrogen, a factorial pot experiment was conducted using litter bag method. The factors examined were different levels of soil lead (0, 25, 50, 100, and 200 mg kg-1soil) and incubation periods (1, 2, 3 and 4 months) in three replications. At the end of incubation periods, the litter bags were pulled o...
متن کاملSoil properties, labile pools of soil organic carbon and their variations under broadleaf and coniferous plantation in Hyrcanian forest, northern Iran
Afforestation, as a tool to mitigate carbon emission is constrained by available land areain several countries, but Iran has the potential of plantation. In doing so, differences in soilstocks between tree species could give an indication of the effects of future managementchanges. Hence, a better understanding of tree species traits on soil properties is required topredict how changes in ecosy...
متن کاملClimate‐related changes of soil characteristics affect bacterial community composition and function of high altitude and latitude lakes
Lakes at high altitude and latitude are typically unproductive ecosystems where external factors outweigh the relative importance of in-lake processes, making them ideal sentinels of climate change. Climate change is inducing upward vegetation shifts at high altitude and latitude regions that translate into changes in the pools of soil organic matter. Upon mobilization, this allochthonous organ...
متن کاملاستفاده از روش رزونانس مغناطیسی هسته 1H و 13C در مطالعه کربن آلی خاک تحت پوشش درختان جنگلی
Soil organic matter is the largest source of organic carbon in the soil surface which played an enormous role in restoring balance, environmental sustainability, soil elements and climatic conditions. Organic materials influence physical, chemical and biological properties of soil and thus soil fertility directly and indirectly. The amount, type and composition of organic matter are different i...
متن کاملStudying Short-Time Dynamics of Vegetation and Soil Organic Carbon in a Semi-arid Rangeland (Case Study: Zharf, Khorasan Province, Iran)
Abstract. Rangeland vegetation dynamics encompass all processes of changes in vegetation composition and structure over time. Investigating the rangeland ecosystem dynamics makes it possible to determine the effects of climatic and management conditions on qualitative and quantitative changes of the vegetation in a specific period of time. Accordingly, data collection and measurements for evalu...
متن کاملEffects of Land use Changes on Some Physiochemical Properties of Soil of Saman Region (Chaharmahal va Bakhtiari Province- Iran)
Objective: Soil organic carbon has been the most important soil quality measurement factors and has intense relation with soil physical, chemical and biological characteristics. Organic matter and its components are important factors of soil aggregates constitution and stability and play significant role in its structure. So, this research has been done for achieving this purpose. Methods: This...
متن کامل